25 augustus 2017 • Gepubliceerd door ; september 26, 2017 at 2:40 pm Qdraw

Supersnel foto’s analyseren dankzij Computer Vision

Je hebt de term vast al voorbij horen komen: Computer Vision. Maar wat is het precies? En nog belangrijker, wat kun je er mee? In deze blogpost nemen we je mee in de wereld van Computer Vision. En je kunt het gelijk zelf testen! (1)

Wat is Computer Vision?

Zoek je weleens op Google naar afbeeldingen? Dan maak je indirect gebruik van Artificial Intelligence (AI)-technologieën zoals Computer Vision. Misschien klinkt dit abstract, maar jij gebruikt ze dagelijks. Met computer vision is het mogelijk om beelden automatisch te analyseren. Zo is het mogelijk om objecten te herkennen. Je kunt emotie, objecten, gezichten en teksten in afbeeldingen uit een beeld halen. En dus herkennen. Deze data is erg waardevol en voor van alles te gebruiken.  

Voorbeeld: Analyseren van een foto

Maar hoe is die data dan waardevol? Stel, je verkoopt sportfoto’s. Dan ben je natuurlijk benieuwd welke foto’s wel en niet verkopen. Maar hoe test je dat? Met Computer Vision kun je een groot aantal foto’s analyseren. Stel, je wilt weten of foto’s van vrouwen met merkkleding beter verkopen dan vrouwen met merkloze kleding. Je kunt dan natuurlijk los alle foto’s gaan labelen. Of de computer het werk laten doen.

Als voorbeeld gebruiken we deze onderstaande afbeelding. Wanneer je alleen deze afbeelding hebt, en geen context, kost het je zeker een paar minuten om tot dezelfde conclusie te komen. Terwijl je dit met Computer Vision in een seconde klaar bent.

Gezicht/emotie-herkenning:

  • Detecteert het gezicht op de foto zelf tot op detail, oog, neus mond en oren.
  • Toont dat emotie blij is.
  • Heeft een grote vorm van zelf vertrouwen.

 

Classificatie van de afbeelding:

  • Persoon
  • Sport
  • Atletisch
  • Hardlopen
  • Marathon
  • Langeafstand lopen

 

Optische tekenherkenning (OCR):

  • Mizuno
  • 2012 U.S. Olympic Trials Women’s
  • Marathon
  • PEYTON
  • Mizuno

 


Voorbeeld van: Gezicht-emotie-herkenning, Classificatie van de afbeelding en Optische tekenherkenning Bron: https://www.flickr.com/photos/born_hiker/6752685015/

“A picture is worth a thousand words”

Voorbeeld: Analyseren van video

De mogelijkheden gaan verder dan alleen foto’s. Video analyseren kan namelijk ook met Computer Vision. Zo is het mogelijk om objecten te herkennen die aanwezig zijn in het beeld.  Door grote datasets te gebruiken en hier de computer learnings uit te trekken, wordt het mogelijk om objecten, emoties en gezichten te herkennen.

Een toepassing zou kunnen zijn, een slimme camera die de gezichtsuitdrukking volgt van grote groepen mensen: kijken ze verrast, verveeld, opgewonden.

Een kort gifje waarin ik verschillende objecten realtime voor de camera beweeg

Benieuwd hoe het werkt?

Open dan de gezicht en emotie herkenning demo (1) op je smartphone. Maak een foto, de computer verwerkt de foto gelijk voor je. De computer schat je leeftijd, je emotie, of je make up op hebt en welke voorwerpen op de foto staan. Wij hadden in ieder geval een hoop lol met het testen, de computer had het verrassend vaak goed.

Wanneer Computer Vision inzetten binnen je organisatie?

Gaaf he, al die mogelijkheden. Maar wanneer kan computer vision bijdragen aan jouw business of organisatie? Bijvoorbeeld:

  • Als een organisatie veel gebruik maakt van afbeeldingen, foto’s, video;
  • Als geen gebruik wordt gemaakt van de beschikbare informatie op de foto’s, afbeeldingen en video’s;
  • Als grote hoeveelheden data nu met de hand worden geanalyseerd;
  • Als jouw organisatie data gedreven is .

 

Mocht de wereld van Computer Vision je interesse hebben gewekt, maar weet je nog niet hoe je dit kunt toepassen en heb je de nodige vragen? Stuur mij dan een mailtje dan kunnen we een kopje koffiedrinken.

Deze blogpost is geschreven door Dion van Velde en Jeroen Beks en verscheen op Colours.nl en Qdraw.nl

1) Gezicht en emotie herkenning is een vorm van Computer Vision. In de demo wordt alleen het gezicht en de emotie gescand, er worden geen objecten herkend.

Tags: , ,

Gecategoriseerd in:

Dit bericht is geschreven door: Dion

Lees ook deze blogs